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Abstract

In this paper, we consider area coverage requests that can be
fulfilled using a set of Earth observation systems, where each
system disposes of its own satellites and its own mission cen-
ter. The approach proposed involves a federation layer that
dispatches meshes of various sizes to the different systems
in a seamless way for the end-users. The dispatch strategy
is optimized based on heuristic search and large neighbor-
hood search. Weather and system workload uncertainties be-
ing hard to estimate, re-dispatch operations are also used to
re-optimize the allocation of meshes to systems depending on
the current progress. Experiments are performed on scenarios
where the goal is to collect images over countries covering up
to hundreds of thousands square kilometers, such as France.

1 Introduction
Nowadays, Earth Observation (EO) satellites are ex-
ploited for various applications, e.g. disaster management,
land monitoring, or conflict monitoring. For such applica-
tions, the end-users demand scalable, responsive, and cost-
effective solutions to observe possibly large areas that may
cover several tens or hundreds of thousands square kilome-
ters, whereas each individual observation performed by a
satellite may cover only a few tens of square kilometers. As
multiple EO systems have been developed over the years to
fulfill specific observation needs, each end-user can post its
observation requests to different candidate missions. Here, a
mission refers to a satellite or a set of satellites managed by
a single operator (or mission center) that uses its own plan-
ning engine to optimize the satellite acquisition plans given
the set of observation requests received so far.

But nowadays, to collect images over large areas as
quickly as possible, it is quite natural to try and benefit from
the capabilities of multiple existing EO missions in paral-
lel (Farges et al. 2024). This leads us to develop an extra
federation layer whose role is to continuously receive obser-
vation requests, dispatch observation tasks to the missions,
get the observation data back, and deliver the corresponding
images to the end-users (see Fig. 1). Doing so, each end-
user benefits from a seamless access to numerous satellite
resources through a single entry point, without having to
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Figure 1: Federated architecture improving performance by
dispatching requests from multiple end-users to multiple
systems in a seamless way (Farges et al. 2024)

care about the details. On the other side, the federation layer
optimizes the decomposition of the workload among several
missions to speed up the achievement of coverage requests,
while possibly merging redundant demands posted by mul-
tiple end-users. Globally, the federation layer must tackle
several challenges:
• It must solve a highly combinatorial problem (hundreds

of requests, tens of satellites or more, many ways to par-
tition a large area among different missions, etc.).

• It must handle multiple objectives (minimization of the
completion time of the coverage requests, minimization
of the total workload of the systems, etc).

• It does not fully control the satellite plans since a specific
planning engine is used by each mission. It may even
ignore the orderbook of some external missions.

• It must deal with various sources of uncertainty, e.g. the
presence of clouds leading to failed images. This requires
to regularly revise the dispatch strategy to take into ac-
count the current progress of the coverage tasks.

The rest of the paper is organized as follows. After having
discussed related works, we formalize the problem solved
by the federation layer. This problem consists in dispatch-
ing meshes among the missions available. We then de-
tail optimization techniques for quickly dispatching and re-
dispatching meshes over different missions. Last, we give
experimental results and provide some perspectives. This
work is performed in the context of the DOMINO-E Eu-



ropean project whose goal is to empower EO operators to
intelligently coordinate their imagery needs across different
mission-specific systems (https://domino-e.eu/).

2 Related works
Covering large areas using several Earth observation satel-
lites is a problem that already received attention in the liter-
ature. On this topic, some existing works discretize the large
areas to get a finite set of relevant (discrete) points within
the area. This is the case for the CLASP system used for
several NASA missions (Maillard, Chien, and Wells 2021).
In this system, a set of observation opportunities is com-
puted for each discrete point given the satellite passes, dif-
ferent candidate slewing angles, and the on/off times of the
instruments. The problem to solve then becomes an obser-
vation opportunity selection problem where the goal is to
maximize the number of points for which a given coverage
quality is reached. For this, the authors propose a greedy
scheduler that exploits a strict priority order between the ob-
servation opportunities coupled with the exploration of dif-
ferent priority orders. On the same line, Liu and Hodgson
(2013) consider a set of points for covering a large area for
disaster emergency response, but they exploit techniques for
extracting a restricted number of relevant points within the
large area. Moreover, their observation opportunity selection
strategy aims at optimizing a weighted sum of four objective
functions respectively related to the spatial resolution of the
opportunities selected, their spectral resolution, the data col-
lection day, and the off-nadir angles. These techniques are
applied to scenarios involving 8 satellites.

Instead of considering observation opportunities over dis-
crete points, some existing works study the multi-satellite
coverage of a polygon using 2D-strips. Ntagiou et al. (2018)
consider a finite set of candidate strips, defined by discrete
slewing angles, together with memory constraints and an ob-
jective function requiring to maximize the coverage percent-
age at the end of the planning horizon. They solve this prob-
lem using ant colony optimization, for a disaster monitor-
ing constellation involving 3 satellites. Similarly, Niu, Tang,
and Wu (2018) compute the set of satellite passes over the
area as well as a finite set of candidate strips based on a fi-
nite set of slewing angles. Their goal is then to select strips
among the candidate ones in order to maximize the cover-
age rate, minimize the completion time, maximize the aver-
age spatial resolution, and minimize the average slew. This
multi-objective optimization problem is solved by a genetic
algorithm, for a scenario involving 16 satellites from dif-
ferent missions. Zhibo et al. (2021) also use a finite set of
candidate strips and a genetic algorithm, but they take into
account the duration of the maneuvers between strips as well
as memory and energy limitations, for a scenario involving
15 satellites. To explore a larger solution space, Chen et al.
(2020) consider 0/1 strip selection variables but continuous
candidate slewing angles for each strip. They also exploit
a genetic algorithm to both maximize the area covered and
minimize the number of selected strips, for scenarios involv-
ing 4 satellites. Lenzen et al. (2021) propose an intermediate
approach where the candidate slewing angles are iteratively
discretized, for a scenario involving a single satellite. Last,

Berger, Lo, and Barkaoui (2020) consider candidate obser-
vation strips that may have heterogeneous orientations.

In another direction, for missions involving agile satellites
that can point in any direction (left, right, forward, back-
ward), some authors developed area scanning strategies ei-
ther for a single satellite (Shao et al. 2018) or for multiple
satellites (Ji and Huang 2019). Finally, there exist works
on planning algorithms managing several coverage requests,
with an objective function favoring the completion of the
ongoing requests based on a non-linear partial reward func-
tion (Lemaı̂tre et al. 2002).

With regard to these existing works, our ambition is to
avoid considering a finite set of arbitrary discrete points or
long strips of arbitrary lengths. To do this, we reason about
the meshes (smaller than strips) associated with each mis-
sion. This allows us to model situations where during a sin-
gle pass over an area, an agile satellite may observe several
adjacent meshes not aligned with the ground track. More-
over, we aim at dealing with both the coverage requests for-
mulated at the level of the federation layer and the requests
directly included in the orderbook of each mission, and with
the fact that the specific planning engine used for each mis-
sion is not directly controllable. Last, we aim at revising the
dispatch strategy given the current progress.

3 Model of the Mesh Dispatch Problem
We first describe the mathematical model developed to dis-
patch coverage requests to different missions possibly using
different mesh sizes. Downlink issues are not handled here.

3.1 Input data
Observation systems and requests The model first con-
siders the following input data:
• R: set of observation requests received by the federation

layer; each request covers an area defined as a union of
polygons;

• S : set of observation systems (or missions) available;
• ∀s ∈ S , MeshSizes ∈ R: size of the meshes of system s

(depending on the swath width of the satellite sensors);
• ∀s ∈ S , Rs: set of requests in the orderbook of demands

received directly by system s (independently of the fed-
eration layer); for external systems, these requests may
be hidden to the federation layer (in this case, Rs = ∅);

• ∀r ∈ R ∪ Rs, P rr ∈ N: priority of request r; as a con-
vention, priority 0 corresponds to the highest priority.

Decomposition of the areas of interest For each system,
the ground areas to observe are decomposed into a set of
meshes. In this work, we assume that all the systems work on
meshes aligned with the North-South and East-West direc-
tions. More precisely, they use a so-called world layer split
that decomposes the Earth surface into a set of layers placed
at successive latitudes. Each layer contains adjacent meshes
covering the set of possible longitudes, and the number of
meshes in a layer decreases from the Equator to the poles.
From the world layer split associated with each system, we
compute the following input data related to the spatial de-
scription of the areas of interest:



• ∀s ∈ S , Ms: for system s, set of meshes that have a non-
empty intersection with one of the requests in R ∪ Rs;
the dimension of each mesh in Ms is compatible with the
swath width of the sensor of each satellite in s;

• C : a set of so-called cells, corresponding to an atomic
decomposition of the areas of interest for the requests
in R ∪ (∪s∈SRs); basically, each cell is a maximum
polygon such that for each observation system, all points
in the cell are contained in the same system mesh (see
Fig. 2);

• ∀c ∈ C , CellSizec ∈ R: size of cell c;
• ∀c ∈ C , UsefulCellSizec ∈ R: size of the intersection

between cell c and the areas of interest; this size is equal
to CellSizec if and only if cell c is fully included in the
areas of interest;

• ∀s ∈ S ,∀i ∈ Ms, Csi ⊆ C : set of cells covered by mesh
i of system s; each mesh may cover more than one cell;
in Fig. 2, some meshes in orange cover up to 9 cells.

Concerning these input data, we use a specific algorithm
(not detailed here) to quickly compute the relevant cells
given the meshing strategy exploited by each system. The
cell-decomposition approach allows us to reason about a
minimum set of discrete entities while bringing strong guar-
antees that the coverage of all the cells implies the coverage
of all the areas of interest (no hole in the final coverage). The
previous input data could also be derived from decomposi-
tions aligned with the ground track of the satellites, but this
point is left for future works.

c

c’

Figure 2: Examples of cells (in red) for an area of in-
terest (in gray), given the meshes of two systems (grids
in blue and orange); for cell c on the top, we have
UsefulCellSizec < CellSizec, while for cell c′ on the right
we have UsefulCellSizec′ = CellSizec′

Capacities of the satellites Given the complexity of the
dispatch problem in terms of number of meshes and satel-
lites, we manipulate a coarse-grain model of the observation
capacities of each satellite. In this model, the passes of the
satellites over the areas of interest are decomposed into suc-
cessive satellite slots, each covering X mesh layers in the
world layer split. See Fig. 3 for a scenario involving 6 satel-
lite passes (arrows in blue), with the corresponding succes-
sive slots for one of them (green rectangles covering X = 5
mesh layers). Within each slot, the satellite can observe up
to N meshes (e.g., N = 5) among a set of visible meshes
defined from the coordinates of the mesh centers and the po-
sition of the satellite over its orbit during the slot (in Fig. 3,
possibility to observe all hatched meshes during the slot in
yellow). Additionally, to get a compact model, we take into

account the fact that each slot of a given satellite can be re-
peatedly used after each orbital cycle (e.g., every 26 days).
If there is no orbital cycle for a given satellite, it is possi-
ble to try and compute an approximate cycle time based on
a given precision on the longitude of the ascending node of
each orbit. Formally, for each system s ∈ S , we consider the
following input data:

• Ks: set of satellite slots associated with system s;
• ∀k ∈ Ks, Capacitysk ∈ N: maximum number of

meshes observable during slot k;
• ∀k ∈ Ks, Msk ⊆ Ms: set of meshes visible during slot
k; these meshes are obtained from geometric conditions
on the satellite-zenith and Sun-zenith angles;

• ∀k ∈ Ks, SlotTimesk ∈ R+: date of slot k;
• ∀k ∈ Ks, Cyclesk ∈ R+: duration after which slot k be-

comes available again (cycle time); hence, slot k is avail-
able at times t1 = SlotTimesk, t2 = SlotTimesk +
Cyclesk, t3 = SlotTimesk + 2 · Cyclesk, and so on.

Note that if the next meteorological forecast for slot k of
system s is not satisfactory owing to a cloud cover thresh-
old, it is possible to update input data SlotTimesk by
SlotTimesk ← SlotTimesk + CycleT imesk. Also, the in-
put data introduced contain several parameters whose pre-
cise values must be set depending on the actual features of
the satellites considered.

Figure 3: Satellite slots defined from satellite passes

Mesh neighborhood In practice, the number of meshes
that can be observed by a satellite during a pass actually de-
pends on the spatial dispersion of the meshes allocated to the
satellite slots, because a higher spatial dispersion increases
the maneuver times between successive observations. Also,
the satellites considered are more agile around the pitch axis
than around the roll axis, and it is therefore preferable to as-
sign to each satellite strips of meshes aligned with the direc-
tion of the ground track of the satellite. For these reasons, we
define a mesh neighborhood structure that is used by the al-
gorithms to try and allocate strips of meshes to the systems,
when possible, rather than meshes spread over the area of
interest. To do this, we introduce the following input data
for each system s ∈ S :



• Nghs ⊆ Ms × Ms: set of mesh pairs (i, i′) such that i
and i′ are considered as neighbors for system s, that is as
meshes that are close to each other;

• ∀(i, i′) ∈ Nghs, SpatialRwdsii′ ∈ R+: mesh grouping
reward obtained if meshes i and i′ are both allocated to
system s.

The neighborhood obtained for each mesh is shown in Fig. 4,
that illustrates both the case where the current mesh layer
and the next one have the same alignment in the world layer
split and the case where a mesh layer and the next one have
different alignments. For instance, we collect a reward of 0.4
if meshes i0 and i5 are both selected, and a reward of 0.16+
0.4 = 0.56 if “strip” {i2, i0, i5} is selected. From a global
point of view, this approach allows us to prefer solutions
where the meshes allocated to a given system are grouped,
as illustrated in Fig. 5. Other settings could be used for the
values of the mesh grouping rewards, for instance to better
deal with the case of inclined orbits.
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Figure 4: Neighborhood of mesh i0 and rewards obtained if
neighboring meshes are selected together with i0

Figure 5: Two allocations of meshes to a given system

3.2 Decision variables
To model the mesh dispatch problem, we introduce the fol-
lowing decision variables:

• ∀s ∈ S , ∀i ∈ Ms, xsi ∈ {0, 1}: Boolean variable tak-
ing value 1 if and only if an observation of mesh i is
requested to system s;

• ∀s ∈ S , ∀k ∈ Ks,∀i ∈ Msk, yski ∈ {0, 1}: Boolean
variable taking value 1 if and only if mesh i is allocated
to satellite slot k of system s;

• ∀s ∈ S , ∀k ∈ Ks, zsk ∈ N: number of cycles required
to observe all the meshes allocated to slot k of system s;

• ∀s ∈ S , ∀k ∈ Ks, tsk ∈ R+: completion time associ-
ated with slot k of system s.

3.3 Constraints
The constraints of the problem are listed in Equations 1-4.
Equation 1 expresses that all cells must be covered by a se-
lected mesh, so that all the areas are covered. Equation 2
expresses that a mesh is allocated to system s if and only if
it is allocated to a (unique) satellite slot associated with s.
Equation 3 defines the minimum number of cycles required
by a slot to observe all the meshes allocated to that slot. This
number is derived from the slot load and the slot capacity.
Equation 4 uses this number of cycles to compute an esti-
mated completion time from each slot.

∀c ∈ C ,
∑

s∈S ,i∈Ms | c∈Csi

xsi ≥ 1 (1)

∀s ∈ S ,∀i ∈ Ms, xsi =
∑
k∈Ks

yski (2)

∀s ∈ S ,∀k ∈ Ks, zsk =

⌈∑
i∈Msk

yski

Capacitysk

⌉
(3)

∀s ∈ S ,∀k ∈ Ks, (4)

tsk =

{
0 if zsk = 0
SlotTimesk + Cyclesk (zsk − 1) otherwise

3.4 Objective functions
The first objective (Equation 5) consists in minimizing the
maximum completion time obtained over the different slots.
The second one (Equation 6) consists in maximizing the re-
ward obtained by allocating neighboring meshes to the same
system, so as to limit the maneuver times for the satellites.
The third objective (Equation 7) is to minimize the size of
the total area over which images are captured. This is equiv-
alent to minimizing the size wasted due to the selection of
overlapping meshes associated with different systems, or
due to the selection of meshes that overlap the frontiers of
the areas of interest. The fourth objective (Equation 8) con-
sists in minimizing the sum of the completion times of the
different slots, the idea being to complete each observation
task as soon as possible instead of just minimizing the com-
pletion time of the last slot.

minimize max
s∈S ,k∈Ks

tsk (5)

maximize
∑

s∈S ,(i,i′)∈Nghs

SpatialRwdsii′ · xsi · xsi′ (6)

minimize
∑

s∈S ,i∈Mk

MeshSizes · xsi (7)

minimize
∑

s∈S ,k∈Ks

tsk (8)

These objective functions lead to a preference for dif-
ferent solutions. For instance, to maximize the total mesh
grouping reward, it is better to allocate all the areas to
cover to a single system, while to minimize the comple-
tion time, it is better to share the workload between the sys-
tems. To jointly optimize the different objectives, we could
use a weighted sum or compute non-dominated solutions,
e.g. based on an epsilon-constrained method. In the follow-
ing, we simply optimize the objective functions in the order



given by Equations 5-8. Once a set of meshes M ′
s ⊆ Ms is

selected for each system s ∈ S , the federation layer sends
requests to system s for demanding the observation of all the
meshes in M ′

s. System s then tries to achieve the correspond
demands in the plans built by its own planning engine.

In the model obtained, the main decision actually consists
in allocating meshes to systems. Indeed, it can be shown that
once these decisions are made, the part of the problem con-
sisting in allocating meshes to slots using a given number of
cycles is actually close to a classical optimization problem
known as a maximum flow problem in a graph. This aspect
is not detailed due to space limitations. Last, the non-linear
constraints and objective functions of the model could be
linearized by introducing additional variables.

4 Optimization Techniques
We now present the algorithms developed for tackling the
mesh dispatch problem, including a greedy heuristic algo-
rithm and a Large Neighborhood Search (LNS). We also de-
scribe methods for re-dispatching the meshes depending on
the current progress of the coverage tasks.

4.1 Greedy Heuristic Search
In order to build good-quality solutions, we first propose a
greedy search process. As illustrated in Fig 6, this process
starts from a solution where the set of meshes allocated to
each system is empty and then iteratively fills the passes of
satellites over the areas of interest. The satellite passes are
filled in a chronological order, that is the next pass to fill is
the pass that starts at the earliest possible time. Here, fill-
ing a pass of a satellite of system s means adding no more
than Capacitysk mesh observations during each slot k of
this pass. The meshes added to slot k are chosen among the
set of meshes in Msk that are not already covered. More-
over, if slot k becomes full following the mesh selections,
we open a new candidate slot at the next cycle, following
input data Cyclesk. The process continues until all the areas
of interest are covered. After that, some post-processing is
performed to remove redundant mesh allocations that may
have been introduced (last step in Fig. 6). In the following,
we detail some algorithmic settings.

Mesh selection heuristics When filling a satellite pass,
we need to select meshes for each satellite slot involved in
the pass. To guide the selection with regard to the objective
functions given in Equations 5-8, the algorithm maintains
several features for each mesh i of each system s ∈ S :
• a mesh grouping score grpScoresi that gives the increase

obtained in the mesh grouping objective function if mesh
i is selected; formally, grouping score grpScoresi is set
to 0 initially for all the meshes, and each time a new
mesh i is selected, the scores of its neighbors i′ (such
that (i, i′) ∈ Nghs) are updated by grpScoresi′ ←
grpScoresi′ + SpatialRwdsii′ ;

• a coverage score covScoresi corresponding to the size of
the subarea of mesh i that is still useful given the meshes
already allocated to satellite passes of other systems; ini-
tially, this coverage score is equal to the sum of the use-
ful areas of the cells covered by i, that is covScoresi ←

→ →

Fill pass 1 Fill pass 2 Fill pass 3

. . . → →

Filling steps Greedy fill done Mesh removals

Figure 6: Iterations of the greedy search procedure select-
ing meshes step-by-step to cover the area of interest, for a
scenario involving two systems (system 1 using the green
meshes and system 2 using the yellow meshes)

∑
c∈Csi

UsefulCellSizec; then, each time a mesh i of
system s is selected, we consider each cell c covered by i
(i.e., each cell c in Csi), and for each mesh i′ of a system
s′ ̸= s such that c ∈ Cs′i′ , we update the coverage score
by covScores′i′ ← covScores′i′ −UsefulCellSizec;

• a so-called penalized mesh priority level Pmsi ∈ R
that takes into account the highest priority of a re-
quest to which mesh i contributes for system s, pe-
nalized by the presence of the area covered by i in
the orderbook of other systems. More precisely, we
can compute a basic mesh priority level Pm′

si =
minr∈R∪Rs | i contributes to r Prr. Then, the penalized
mesh priority level is given by Pmsi = Pm′

si + 0.5
if the area covered by mesh i has a non-null intersec-
tion with the orderbook of another system s′ ̸= s, and
Pmsi = Pm′

si otherwise.
Then, at each mesh selection step, we use the following

heuristic:
• select a mesh that has a positive coverage score

(covScoresi > 0) to avoid useless observations;
• in case of ties, select a mesh whose penalized priority

level is the smallest; the idea is to prefer the selection
of meshes associated with high-priority requests and that
are not present in the orderbook of other systems;

• in case of ties, select a mesh that has the highest coverage
score; this penalizes the selection of meshes overlapping
meshes selected for other systems;

• in case of ties, select a mesh that gives the highest mesh
grouping reward, to decrease the maneuver times;

• in case of ties, select a random mesh.

Removal of useless meshes During the greedy fill pro-
cess, it may happen that a mesh i of system s is selected
at some step and then a mesh i′ containing i and associated
with another system s′ is selected at another step. In this
case, the selection of mesh i can be canceled. To identify the
useless meshes, we maintain for each cell c ∈ C the set of



meshes covMeshesc covering c that are selected in the cur-
rent solution. This set is initialized by covMeshesc ← ∅ and
updated each time a new mesh i covering c is selected for a
system s (covMeshesc ← covMeshesc ∪ {i} in this case).

Then, to remove all useless meshes, we traverse the satel-
lite passes of the current solution in the reverse chronologi-
cal order. For each mesh i of system s allocated to the pass
considered and such that covScoresi = 0, we remove i from
the current solution and apply operation covMeshesc ←
covMeshesc \ {i} for each cell c ∈ Csi. Moreover, if set
covMeshesc becomes a singleton containing a unique mesh
i′ associated with a system s′, the coverage score of i′ is in-
creased by covScores′i′ ← covScores′i′ +UsefulCellSizec.
This leads to covScores′i′ > 0, hence mesh i′ will never
be deactivated during the mesh removal process, or in other
words it becomes mandatory.

Solution compression Due to mesh deactivations, there
may exist residual capacities in some satellite slots of the
current solution. To exploit these residual capacities, we tra-
verse the satellite slots of each system s by increasing com-
pletion times. For each mesh i allocated to a slot k, if pos-
sible, we move i to the first slot k′ such that (1) k′ has a
residual capacity, (2) i ∈ Msk′ , and (3) adding i to k′ leads
to a lower completion time for i. In other words, we perform
a backward move exploiting a residual capacity in k′.

4.2 Large Neighborhood Search (LNS)
The greedy fill process described before can be iterated to
generate several candidate solutions, since the mesh selec-
tion heuristic involves random choices in case of ties. A
multi-start strategy can be useful to diversify the set of so-
lutions explored, but it is also relevant to intensify search
around the solution found after each greedy filling phase.
This is why we also propose to use LNS (Pisinger and Røpke
2010). In the LNS metaheuristic, the main idea is to perform
successive destroy and repair operations over the current so-
lution to try and optimize its quality. In our case, a destroy
operation consists in removing x% of the meshes allocated
to each system, and a repair operation consists in using the
chronological pass-filling process to cover the whole area
again. These mechanisms are illustrated in Fig. 7 over a few
steps. When the destroy and repair operations do not im-
prove the current solution during several iterations (parame-
ter referred to as nItNoImprovement), the algorithm restarts
from an empty plan. The search continues until a maximum
CPU time is reached. Finally, the best solution found is re-
turned. On this point, to compare the solutions found during
the search process, we use the four metrics of Equations 5-8
in a lexicographic order.

For the destroy phase, several mesh selection heuristics
can be used, such as giving a preference to the removal of
meshes having a low coverage score, a low mesh grouping
score, or a large estimated completion time. But to add di-
versity in the search process, the meshes deactivated at each
destroy phase are chosen randomly among the set of meshes
that have non-selected neighbors in the current solution, or
in other words randomly among the set of meshes placed at
the frontier of a group of meshes.

→ →

Initial solution Destroy Repair

→ → → . . .

Destroy Repair LNS steps

Figure 7: LNS procedure using successive destroy and repair
operations, together with restart mechanisms

4.3 Re-dispatch algorithm
Each planning step of the federation layer produces a dis-
patch strategy that allocates meshes to different observation
systems. One issue is that the set of observations actually
achieved by each system may significantly differ from the
set of observations expected by the federation layer. Indeed,
the latter only takes into account a coarse-grain model of the
observation capacities of the satellites, it does not model the
precise behavior of the specific planner used by each individ-
ual mission, and it does not take into account the arrival of
new requests. Moreover, the cloud cover forecast may differ
from the actual cloud cover, hence some meshes may have to
be observed again to get valid images. Last, it is relevant to
regularly take into account potential deviations concerning
the actual orbital positions of the satellites. For all these rea-
sons, we regularly adapt the mesh dispatch strategy. To do
this, we directly reuse the LNS algorithm detailed before,
starting either from an empty solution, or from the solution
obtained after the last dispatch phase of the federation layer.
During the re-dispatch phase, we also update the input data,
by adding observation requests received since the last opti-
mization step and removing the areas over which valid im-
ages have been collected. The optimization of plan stability
metrics can be relevant but is left for future works.

5 Experimental results
This section provides experimental results obtained for both
mesh dispatching and re-dispatching scenarios. We consider
a unique coverage request and empty orderbooks, even if
the algorithms defined can deal with multiple requests and
non-empty orderbooks. The results are obtained over proces-
sors Intel(R) Core(TM) i5-8400H CPU 2.50GHz for the dis-
patch case and processors Intel(R) Xeon(R) CPU E5-2660-
v3 2.60GHz for the re-dispatch case.

5.1 Dispatch case
Scenarios We consider coverage requests over six areas
of various shapes and sizes: Netherlands, Denmark, Croatia,
Occitanie (French region), France (Metropolitan), and Chile.



To achieve the coverage tasks, two observation systems us-
ing sun-synchronous orbits are available:
• System S1 (called CO3D) composed of 4 satellites (semi-

major axis: 6880km; mesh size: 5km×7km).
• System S2 (called PNEO) composed of 2 satellites (semi-

major axis: 7000km; mesh size: 13km×13km).
From the full set of orbital parameters, we compute the time
periods during which each satellite overflies the area of inter-
est and may observe relevant meshes given maximum obser-
vation angle constraints. Moreover, for each satellite of each
system, the cycle time is equal to 26 days, meaning that in
a geocentric coordinate frame, each satellite comes back to
its initial position after this duration. The observation time
of each satellite is divided into successive time slots. For the
experiments, the duration of each slot is set to 20 seconds.
Each satellite of S1 can observe up to 10 meshes per slot
(Capacitysk = 10) and each satellite of S2 can observe up
to 3 meshes per slot (Capacitysk = 3).

Results Fig. 8 gives solutions produced by the LNS algo-
rithm for the six areas of interest, using a maximum CPU
time of 2 minutes except for instances Chile and France,
where this CPU time is arbitrarily raised to 5 minutes be-
cause these instances contain a higher number of cells and
meshes, and better solutions are found between 2 minutes
and 5 minutes of computational time. Globally, we can see
that meshes are dispatched to the two observation systems
available (S1 in green, S2 in yellow), the meshes allocated
to a system are rather grouped, and the overlapping between
meshes allocated to different systems is rather low.

Table 1 gives details about the number of candidate
meshes for the two systems (#msh-S1 and #msh-S2), the
number of cells (#cells), the time required to decompose
the coverage area into meshes and cells and initialize the
satellite slots (tIni), the time required to get a first solution
using the chronological greedy pass-filling algorithm (tGr),
the mean number of destroy and repair operations performed
per second for LNS (#it/s), and the estimated number of days
required to cover the area by using both S1 and S2 (#days-
Sall) or each system alone (#days-S1, #days-S2). Globally,
the table shows that the algorithm manages to produce so-
lutions for instances involving several thousands of cells in
a few seconds, and solutions for instances involving tens of
thousands of cells in about one minute. They also show that
using the two systems together is beneficial to minimize the
estimated completion time of the coverage.

For the Croatia benchmark, Fig. 9 shows, at each iteration
of the algorithm, the values obtained for the four solution
evaluation metrics (to be minimized in a lexicographic or-
der): (1) coverage completion time in days, (2) loss in the
mesh grouping reward, (3) area wastage due to overlapping
meshes or portions of meshes located outside of the area
of interest, (4) average mesh completion time. Here, an it-
eration refers to the application of one destroy and repair
step of the LNS algorithm. The results show that the iter-
ation at which the best solution is found (dashed red bar)
is not systematically one of the first iterations. This means
that restarting from empty solutions after a number of search
steps without improvement helps finding better solutions.

Netherlands Denmark

Croatia Occitanie

France Chile

Figure 8: Dispatch solutions found for several areas (meshes
of S1 in green, meshes of S2 in orange); configuration:
destroy percentage = 20%, nItNoImprovement = 15, max-
CpuTime = 2 min for instances Netherlands, Denmark,
Croatia, Occitanie, and 5 min for France, Chile

instance #msh #cells tIni(s) tGr(s) #it/s #days
S1 S2 Sall S1 S2

Nthlands 298 1255 2400 2.31 0.83 8.35 12 39 27
Denmark 407 1621 3047 3.21 1.05 6.27 12 40 30
Croatia 497 2059 3903 2.55 1.32 3.56 20 62 48

Occitanie 517 2322 4572 3.16 2.08 2.49 24 77 59
France 3628 16836 33336 30.82 38.77 0.12 69 189 130
Chile 5497 25236 49492 21.73 57.98 0.03 18 34 24

Table 1: Results for the dispatch case on different instances;
configuration: destroy percentage = 20%, nItNoImprove-
ment = 15, maxCpuTime = 2 min for instances Netherlands,
Denmark, Croatia, Occitanie, and 5 min for France, Chile

5.2 Re-dispatch case
Scenarios To evaluate the method proposed in the re-
dispatch case, we simulate (1) the mission planning engine
associated with each system, that actually plans the obser-
vation of meshes given the current orderbook, and (2) the
rejection of mesh observations due to the cloud cover condi-



Figure 9: Evolution of the solution evaluation metrics along
the iterations of LNS; configuration: destroy percentage =
20%, nItNoImprovement = 15, maxCpuTime = 2 min

tions. As a result, we simulate one day of operations of each
satellite as follows:
• for each slot k of a satellite of system s over the day,

we randomly choose Capacitysk meshes that are visi-
ble during slot k and not observed yet (random choice
using a uniform probability distribution); if the num-
ber of meshes satisfying these conditions is less than
Capacitysk, we select all the candidate meshes;

• we consider that each mesh selected is planned and vali-
dated with a certain probability. For the experiments we
consider a coarse-grain simulation based on two accep-
tance scenarios:
– Scenario A “High workload in the orderbook of

S1”: mesh acceptance probability randomly chosen in
[0.1, 0.5] for S1 and [0.6, 1.0] for S2;

– Scenario B “High workload in the orderbook of
S2”: mesh acceptance probability randomly chosen in
[0.6, 1.0] for S1 and [0.1, 0.5] for S2.

We perform experiments for three reassessment periods (1
day, 7 days, and 14 days) together with the no-reassessment
case. At each reassessment phase, we recompute the mesh
dispatching strategy, and to limit the duration of the simula-
tions we use a maximum CPU time of one minute for each
reassessment phase. We do not consider instances Chile and
France that contain a higher number of meshes and cells and
require higher simulation times to test all the configurations.

Results Fig. 10 shows the evolution of the completion rate
over time in Scenario A for different areas of interest and
different reassessment periods (case R1000 corresponds to

the no-reassessment case). The results for Scenario B are
similar. Globally, we can see that using a shorter reassess-
ment period is beneficial, especially during the second half
of the coverage period. This is because during the first re-
assessment periods, each system somehow always has some
workload to do, while during the last reassessment periods,
one of the systems may be idle while another one is strug-
gling with a high workload. Using a shorter reassessment
period, e.g. 1 day, helps such situations to be avoided. Con-
versely, as shown by configuration “Croatia instance, Sce-
nario A”, it may happen that reassessing too often decreases
the performance, possibly because keeping a stable dispatch
strategy is sometimes better than systematically reacting to
small disturbances in the current progress.

Figure 10: Impact of the reassessment period on the evolu-
tion of the completion rate

6 Conclusion and Perspectives
This paper introduced a model of a mesh dispatch prob-
lem for a federation layer, together with heuristic and large
neighborhood search methods. There are several perspec-
tives for this work. First, further experiments must be per-
formed in the multi-request case. Second, historical weather
data could be exploited to better deal with sub-areas that are
hard to capture due to bad local meteorological conditions
on average; such sub-areas could be allocated to several sys-
tems in parallel. Third, the case of meshes that do not have
a North-South orientation (e.g., for inclined orbits) should
be tackled. Last, experiments must be performed with the
actual planning engines used by the individual missions.
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