The Domino-E Webinar Series Unlocking the Future of Earth Observation

Webinar Session 1: The Domino Architecture A New Era of Earth Observation

19.03.2025, 10:30 - 12:00 CET

www.domino-e.eu

At a Glance

The Domino-E project

•Aims to revolutionize satellite operations through open architecture and advanced technologies

•A collaborative project bringing together 7 partners from 5 countries

•Funded under Horizon **Europe, the EU's key funding** program for research and innovation

Your access to multi-mission Earth observation

DOMINO-E is an EU funded project solving the issue of availablity and reactivity of earth observation data. It enables multi-mission accessibility in a scalable and affordable way

Download the Domino-E Whitepaper

Access the Domino-E Whiteper now

www.domino-e.eu

At a Glance

The Domino-E Webinar Series

SESSION #1: THE DOMINO ARCHITECTURE - A NEW ERA OF EARTH OBSERVATION

Schedule

10:30 - 10:45	Onboarding and Welcome
10:45 - 11:00	History and State-of-the-art for EO mission management by J.
	Vinuesa (ADS)
11:00 - 11:15	Introduction to the Domino Vision by J. Vinuesa (ADS)
11:15 - 11:55	Federated Earth Observation Architecture; Interview and Q&A with D.
	Novak (ADS)
11:55 - 12:00	Announcement Webinar #2; Closing
11.55 - 12.00	Announcement webmar #2, closing

Co-funded by the European Ur

Date & Time: 19.03.2025; 10:30 - 12:00 CET

SESSION #2: DEVELOPING WITHIN DOMINO - EXAMPLES FROM DOMINO-E

Schedule

10:30 - 10:40	Onb
10:40 - 10:50	Wha
10:50 - 11:10	Dom
	P.Pa
11:10 - 11:30	Dom
	(ONI
11:30 - 11:50	Dom
11:50 - 12:00	Anno

parding and Welcome ero (ADS) and J. Rezler (iTTi) ERA, tbc), Cyrille de Lussy (ADS, tbc) ouncement Webinar #3; Closing

- : is a Domino? by M. Anranter/ T. Stollenwerk (Oikoplus) no #1: Satellite Communication and Resource Management by ino #2: Coverage Service by M. Devant (Capgemini), C. Prálet
- ino #3: Virtual Assistant by R. Skadins (Tilde)

Co-funded by the European Unio

Date & Time: 25.03.2025; 10:30 – 12:00 CET

SESSION #3: THE DOMINO ECOSYSTEM: BUSINESS OPPORTUNITIES FOR SME'S

Schedule

10:30 - 10:40	Onboarding and Welcome
10:40 - 11:00	Business models and opportunities in the EO market by A.
	Atencyia-Yepez (GMV)
11:00 - 11:40	Roundtable discussion: Where is European EO heading? With: S.
	Derrien (Capgemini), D. Novak (ADS), G. Taberski (iTTi)
11:40 - 11:50	In a nutshell: Joining the Domino Ecosystem by J. Vinuesa (ADS)
11:50 - 12:00	On-demand materials & webinar closing

Co-funded by the European U

Date & Time: 31.03.2025; 10:30 – 12:00 CET

Housekeeping

Interaction & Recording

Co-funded by the European Union

Introduction

Session 1: The Domino Architecture A New Era of Earth Observation

Co-funded by the European Union

Introduction: Session 1

What is to come?

Federated Earth Observation Systems	Domino architecture Earth
EO ground segments	DOMINO
Future of Earth Observation	vision
State-of-the-Art EO mission management	Innovation Domino-E
Орр	oortunities in Space

Co-funded by the European Union

Introduction

What is to come?

Federated Earth **Observation Systems**

EO ground segments

Future of Earth Observation

State-of-the-Art EO mission management

Domino architecture

> Earth **Observation**

DOMINO vision

Innovation

Domino-E

Opportunities in Space

Schedule

10:30 - 10:45 10:45 - 11:00

11:00 - 11:15 11:15 - 11:55

11:55 - 12:00

SESSION #1: THE DOMINO ARCHITECTURE - A NEW ERA OF EARTH OBSERVATION

Onboarding and Welcome History and State-of-the-art for EO mission management by J. Vinuesa (ADS) Introduction to the Domino Vision by J. Vinuesa (ADS) Federated Earth Observation Architecture; Interview and Q&A with D. Novak (ADS) Announcement Webinar #2; Closing

History and State of the Art for EO Mission Vanagement

Jean-Francois Vinuesa (Airbus Defence and Space) Michael Anranter (OIKOPLUS GmbH)

Co-funded by the European Union

1858, Félix Nadar

Photograph taken from hot air baloon

Co-funded by the European Union

1858, Félix Nadar

Photograph taken from hot air baloon

1906, George Lawrence

Photograph taken from kite

Co-funded by the European Union

1858, Félix Nadar

Photograph taken from hot air baloon

1906, George Lawrence

Photograph taken from kite

1907, Julius Neubronner

Pigeon photography

www.domino-e.eu

1858, Félix Nadar

Photograph taken from hot air baloon

1906, George Lawrence

Photograph taken from kite

1907, Julius Neubronner

Pigeon photography

1942, n.n.

Photograph taken from airplaines

www.domino-e.eu

Space-based Earth Observation 24.10.1946

First photo of Earth taken from space. Film: 35mm

Source: White Sands Missile Range/Applied Physics Laboratory

Sattelite-based Strategic Earth Observation since 1950's

Selected EO programmes in chronological order

LANDSAT — NASA, 1972 - today. 1st civic acquisition of satellite imagery (for agriculture, cartography, geology, foresty, regional planning, surveillance, education)

SPOT Système Probatoire d'Obersvation de la Terre — CNES, 1986-2024. 1st European high-resolution commercial EO satellite.

ERS 1&2 European Remote Sensing Satellites — ESA, 1991-2011. Highlight: C-Band Synthetic Aperture Radar with 30m*30m resolution.

ESA, 2011. Url: https://www.esa.int/ESA Multimedia/Missions/ERS-2/(result_type)/images

www.domino-e.eu

Current EO Missions

Selected satellite-based EO missions

Governmental EO Constellations

- Copernicus Programme (Sentinel 1, 2 and 3) — ESA
- Earth Observing System (Terra & Aqua Satellites) — NASA
- EarthCARE ESA & JAXA
- Pleiades (ADS & CNES)

Next

- **Copernicus Expansion Mission, ESA**
- NISAR (NASA & ISRO)

<u>d_hail</u>

https://www.esa.int/ESA_Multimedia/Images/2024/10/EarthCARE_s_cloud_profiling_radar_detects_snow_rain_an

www.domino-e.eu

Current EO Missions

Selected satellite-based EO missions

Photo: ICEYE, 2025. Url: https://www.iceye.com/hubfs/ICEYE_Rotterdam_zoomin 2PR webpage-1.png

Commercial Earth Observation Constellations:

- Planet Labs; large fleet of small satellites, providing HR imagery of Earth's entire landmass, supporting agriculture & disaster response)
- Maxar Technologies; offers VHR satellite imagery used in mapping, defense, and environmental monitoring
- ICEYE, specialises in synthetic aperture radar (SAR) satellites, delivering HR radar imagery for flood monitoring and maritime surveillance.

AIRBUS, Pleiades Neo integrating optical and radar HR satellite imagery, daily coverage: 1.000.000 km²

Weather reliability reduced. Continuity through long-term missions.

Al-supported supported data collection and data analysis.

Co-funded by the European Union

Weather reliability reduced. Continuity through long-term missions.

Al-supported supported data collection and data analysis.

Different wavelength imagery (visual imaging + active and passive remote sensing) for different applications.

Co-funded by the European Union

Weather reliability reduced. Continuity through long-term missions.

Al-supported supported data collection and data analysis.

Different wavelength imagery (visual imaging + active and passive remote sensing) for different applications.

Improved ability to control, co-ordinate and re-adjust data acquisition while assets remain in orbit.

Co-funded by the European Union

Weather reliability reduced. Continuity through long-term missions.

Al-supported supported data collection and data analysis.

Different wavelength imagery (visual imaging + active and passive remote sensing) for different applications.

Improved ability to control, co-ordinate and re-adjust data acquisition while assets remain in orbit.

Equipment size, weight etc. have been drastically reduced.

Smaller, more efficient and durable equipment makes EO missions more affordable.

Where we are Standing at: Contemporary EO Ground Segment Challenges

Fast & Reactive Image Acquisition

- **Demand for higher**resolution and multiwavelength images with larger amount of data
- **Real-time or near-real-time** imaging as a key goal, improved reactiveness and faster image acquisition
- **Ground segments enabling** higher payload capacities and faster data transmission and processing

Imgae: KJpargeter, 2025. Url: https://shorturl.at/sbzCM

www.domino-e.eu

Where we are Standing at: Contemporary EO Ground Segment Challenges **Affordable Image Acquisition**

Imgae: Wirestock, 2025. Url: https://shorturl.at/cOWx4

- **Decrease costs for mission** planning, scheduling, and realtime data processing
- Automation to reduce manual tasks, lowering operational expenses and amount of consultancy needed
- **Reduction of opportunity** costs resulting from waiting times

State-of-the-Art satellite-based EO Tasking Loop

Identifying current restrictions

Customer request

Acquisition plan

30-70 minutes

Co-funded by the European Union

State-of-the-Art satellite-based EO Tasking Loop

Identifying current restrictions

Customer request

Acquisition plan

Acquisition plan upload

Image acquisition

30-70 minutes

60 minutes

Data download

www.domino-e.eu

State-of-the-Art satellite-based EO Tasking Loop

Identifying current restrictions

Customer request

Acquisition plan

Acquisition plan upload

Image acquisition

30-70 minutes

60 minutes

110- 160 minutes

www.domino-e.eu

The Domino Vision

Jean-Francois Vinuesa (Airbus Defence and Space)

Co-funded by the European Union

Why Domino?

Better solutions for customers and better profability for industries through a standardized modular architecture **Challenges to address:**

- Space market is evolving fast with new comers
- **Customer needs are evolving**
- Future systems will be more complex and multi-missions
- Sovereignty and trustability on the system and the data
- Hybrid and public cloud costs and deployments
- Maximization of component reuse reducing costs, risks and schedules
- Low coupling between components to provide modularity and localize impacts, constraints and evolutions

Added Values of Domino Modular and Standardized Architecture

Better value proposition for clients

- Easier to set up the best industrial scheme
- Easier to provide the best technical solution against customer needs
- Less risky to implement evolutions on a complex system
- Increased confidence level
- Easier on CAPEX/OPEX calibration/decision

Derisked schedules if industrial schemes are complex

- Clearer sharing of responsibilities at the start of a program (gains during engineering and integration)
- Less risky engineering and IVV phases, fewer potential escalations
- **Derisk development from supply chain**
- More secured margins
- Focus on the content (performances) and not on interfaces

Incentivised investments

- **Clear and stable technical conditions for the integration of E2E systems**
- Facilitated product strategy and reuse maximization
- More accessible maintenance and evolution contracts for the client

www.domino-e.eu

What is a Domino?

A DOMINO provides a valuable **SERVICE** to any Earth Observation ground segment

A DOMINO:

- Autonomously produces outputs from a set of inputs
- **Provides a define set of services**
- Can be deployed on a cloud
- Is independent from other dominoes infrastructure
- Is accountable for its performances
- Is interchangeable by another implementation respecting the same interfaces

Each Domino developer is in charge of providing a compliant implementation and architecture

A DOMINO:

- Can be multi-missions or dedicated to one mission (Dominoes perimeter)
- Can integrate mandatory or optional functionalities (**Dominoes optionality**)
- Can be delivered as a service or as a product (Dominoes mode)
- Can be deployed as a unique instance or as a multi-instance component to meet performances and needs (**Dominoes instances**)

Domino Architecture Guidelines

Answers industry needs in terms of reactivity and adaptability reusing existing building blocks

www.domino-e.eu

Domino: the Next Ground Segment – A Ready to Start Architecture

Decrease time to market thanks to mature architecture and relying on existing Dominoes

Domino architecture agreed baseline T0

Instantiate Domino architecture for the project

Industrial Organisation

Ground Segment Deployment

Cloud deployment

Domino ground segment architecture

Federated Earth **Observation Architecture –** An nterview

Daniel Novak (Airbus Defence and Space)

Moderation: Thomas Stollenwerk (Oikoplus)

Co-funded by the European Union

Co-funded by the European Union

Outlook: Developing Within Domino – Examples from Domino-E

Co-funded by the European Union

Tuesday, 25.03.2025 - 10:30 to 12:00

- What is a Domino? Understanding the modular concept
- Satellite Communication & Resource **Management – How automation** optimizes satellite operations
- **Coverage Services for Improved Data Quality – Al-driven solutions to** enhance EO imagery
- Virtual Assistants in EO Making mission tasking easier and more accessible

Upcoming Session: Developing Within Domino – Examples from Domino-E

www.domino-e.eu

Thank you

AIRBUS Capgemini ITTi **UUE OIKO** INNOVATING SOLUTIONS ONERA THE FRENCH AEROSPACE LAB

• DOMINO

www.domino-e.eu

